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The problem of a local description (near to a stationmy point or orbit) of the quasipotentiai---the Lyapunov function, used when 
analysing the stability of a system with small non-degenerate random perturbations is considered. First approximations are 
constructed for quasipotentials in neighbourhoods of these invariant sets. The quadratic forms specifying these appro~dmations 
are governed by certain matrices. The construction of these matrices is reduced to the solution of Lyapunov matrix equations 
(which are algebraic i~1 the case of stationary points, and differential with periodic coefficients in the case of orbits). 

When investigating the stability of a stationary point ~ of the deterministic system 

dx = ffx)dt (0.1) 

acted upon by small random interference it is usual to change from Eq. (0.1) to the system of stochastic differential 
equations 

dx = f(x)dt + eo(x)dw(t) (0.2) 

where the diffusion coefficient vanishes at the point ~: o(~) = 0, i.e. the point ~ is also a stationary point for the 
stochastic system (0.2). It is for such systems, with noise which is degenerate in ~, a theory has been developed for 
the usual types of stochastic stability: by probability, with unit probability, and with moments of different orders 
[1-3]. In a more realistic situation the system has non-degenerate noise capable of taking it out of the equilibrium 
position. 

The number of papers investigating systems with non-degenerate noise o(~) # 0 is much smaller. For similar 
systems the question of the existence of a stable stationary distribution has been investigated, and, in the linear 
case, one can fairly ;;imply compute moments of various orders. For non-linear systems with non-degenerate low- 
intensity interference a method has been developed [4] for finding certain stochastic parameters (the mean departure 
time from a specified neighbourhood, the distribution function for the departure time, etc.) which enable one to 
judge the nature of the stability. Here a Lyapunov function of special fo rm--a  quasipotential (the minimum of 
the action function~J)--is widely used. The quasipotential, being the Bellman function of some optimal control 
problem, satisfies the Hamilton-Jacobi equation, which is too difficult to solve when the original system is non- 
linear. Furthermore, in stability problems, one is, as a rule, mostly interested in the behaviour of the system in a 
small neighbourhood, and it is sufficient to have an appropriate local description of the quasipotential. 

Section 1 of this paper investigates the quasipotential in the neighbourhood of the stationary point. Finding the 
matrix of the quadratic form-- the  first term of the expansion of the quasipotential--is reduced to the solution of 
Lyapunov's equation. An estimate of the error in finding the first approximation of the quasipotential is obtained. 

Section 2 considers the stability problem for the case when one takes a closed curve--an orbit-- to be the limiting 
variant set of the original deterministic system (0.1), instead of a point. Necessary and sufficient conditions for 
exponential orbital stability (EOS), associated with the Andronov-Witt theorem and its analogues, are related to 
the first Lyapunov method. Orbital Lyapanov functions were introduced in [7] to investigate the EOS of deterministic 
systems. Using t h e ~  functions criteria were obtained in [8] for the mean-square stability of systems that were 
degenerate along the orbit. For non-degenerate noise the quasipotential is taken to be the orbital Lyapunov function. 
As in Section 1, the first term of the expansion of the quasipotential in the neighbourhood of the orbit is given by 
some matrix. 

In the given case tJais matrix is a periodic function of time. Its construction reduces to the solution of a Lyapunov 
matrix equation with periodic coefficients. The existence and uniqueness of this solution is investigated. 

In Section 3 a method is proposed for the two-dimensional (plane orbit) case that enables one to obtain the 
first approximation of the quasipotential in analytic form. Section 4 contains examples illustrating the results 
obtained, both in the case of a stationary point and for an orbit. 
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1. THE Q U A S I P O T E N T I A L  IN THE N E I G H B O U R H O O D  
OF A STATIONARY POINT 

Suppose that in Ecls (0.1) and (0.2) x is an n-dimensional vector, w(t) is an m-dimensional standard 
Wiener process, and  the sufficiently smooth functions f(x) and o(x) have dimensions of n and n x m. 
We shall assume that in system (0.1) ~ is an exponentially stable isolated stationary point (f(~) = 0) and 
that a neighbourhood U of the point ~ exists in which the noise of system (0.2) is non-degenerate, i.e. for 
any x ~ U the matrix S(x) = q(x)cyr(x) is positive-definite (and, in particular, o(~) # 0 and S(~) > 0). 
One can, of course, choose ~ to be at the origin of coordinates. However, we will not do this because 
we wish to use the same notation in the orbital case. We introduce the system 

y" = - f ly )  + u, y(0) = x (1.1) 

wherey is an n-dimensional state and u is an n-dimensional control, taking the solution of system (1.1) 
from the initial position x to the point 

lim y(s) = ~ (1.2) 
$--~eo 

The quasipotential [4] for system (0.2) in the neighbourhood U of the stationary point ~ is the 
function 

qi(x)=ind2iur(s)Q(y(s))u(s)ds, Q(y) = S-'(y) (1.3) 

where the functions u(s) andy(s) satisfy system (1.1), (1.2). For thosey(s) for which the matrix S(y(s)) 
degenerates (which can happen ify(s) does not belong to U), we make the integrand in (1.3) formally 
equal to plus infinity. We write /2/n 

~qi~x = (l,~Xl'"'" ~Xn ) ~ X 2 -  ~ i,j=l 
In the neighbourhood U the function q~(x) satisfies the Hamilton-Jacobi equation 

3¢p 1 O(p 
(1.4) 

Here 

~0(~) = o, ~0(x) I-- o (1.5) 

We construct the first approximation of the quasipotential in a neighbourhood of the stationary 
point. We assume that the function (p(x) is sufficiently smooth in the neighbourhood U. We can then 
write 

~2 
(1.6) 

The equality a~&(~) = 0 follows from (1.5), i.e. the first two terms of the expansion (1.6) are zero. 
As a result we have the representation 

~ ( x )  = q>~ ( x )  + O(Ix - ~l 3) (1.7) 

where  the  quadratic fo rm (Pl(X) = @ - ~)TV(x - ~) is defined by the matrix 

I ~2q~ _ (1.8) v = ~ ~-~-(~) 

After differentiating (1.4) twice with respect to x and substituting x = ~ we obtain the equation 
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F r V  + VF+ 2VSV = 0 
(1.9) 

/ n 
F = (~) , S = S(~) = O(~)or(~) 

k, J Ji, j=l 

for the matrix V. 
Due to the exponential stability of thepoint ~ in system (0.1), F is a Hurwitz matrix. If Vis a positive 

definite matrix, then the matrix W = W l satisfies Lyapunov's equation 

F W  + W F  r +2S = 0 (1.10) 

which is obtained after multiplying the left-hand side of Eq. (1.9) on the left and fight by [,r-1. 
Thus, assuming: the smoothness of ¢p(x) and the positive definiteness of matrix (1.8), we obtain relation 

(1.7) where the matrix V of the quadratic form ~Pl(X) can be found by inverting the matrix W, which is 
the solution to F~] .  ( 1 . 1 0 ) .  

We now consict~r Eq. (1.10) to be the initial equation. Because F is a Hurwitz matrix and S is positive 
definite, Eq. (1.101) has a unique solution: the positive-definite matrix W. Then V" = W 1 satisfies Eq. (1.9). 
We consider the fimction ¥ ( x )  = (x - ~ ) 'V (x  - ~). We note that ~(x) is the exact quasipotential for a 
linear system with additive noise 

dz = Fzdt + ~.O(~)dw(t), z = x-~ 

which is the first-approximation system for (0.2) near the point ~. 

Lemma 1. For ,,,Tstem (1.1) with control 

u,(y) = -S(Y)~xV (y) 

the solution y(t) m_~ ~ is exponentially stable. 

Proof. The right-hand side of system (1.1) can be written in the form 

- f ( y )  + u (y)  = - F ( y -  ~) - 2SV(y  - ~) + o(ly - ~l 3 ) -- F, (y  - ~)  + O(]y - ~l 3 ) 

where F .  ffi - F - 2SV is the matrix of the first-approximation system for system (1.1) with control u*0'). 
Since 

F.r V + VF, =-2  VSV 

where the matrices iVand VSVare positive definite, F, is a Hurwitz matrix. The control u.(y) therefore stabilizes 
system (1.1). 

Theorem 1. Suppose ¥(x) = (x - ~)rV(x - ~), where V = W q, and W is a solution of Eq. (1.10). We 
have the representation 

~(x) = ¥(x) + O(Ix - ~]3) 

for the quasipotenLtial (1.3) in the neighbourhood U of the point ~. 

Proof. Consider the functional L(x ,  u)  = J(x, u)  - ¥ ( x )  where 

is computed along the solutiony(s) of system (1.1) with control u(s). By  Lemma 1,J(x, u.) < **. Using 
the technique of [9], we can write 
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L(x, u) = ~G(y(t),u(t))dt 
0 

G ( y , u ) = l u r Q ( y ) u + l ~ x ( y ) , - f ( y ) + u  ) 

For any fixedy the function G(y, u) is a second-order form in u, such that for u. = -Q-l(y)(3W~x)(y ) 
we have the relations 

G(y,u) >I G(y,u, ) = - 2 [ ( y -  ¢) r v Q - i ( y ) V ( y - ~ ) + ( y - ¢ )  r Vf(y)] 

Since 

we have 

Q-t (y) = o(y)or  (y) = S+ O(]y - ~[) 

f ( y )  = f (¢ )  + F(y - ¢) + O(ly - ~12) 

G(y, u. ) = - ( y  - ¢)T [2VSV + VF + FrV](y - ¢) + O([y - ¢13) 
Using (1.9), we obtain G(y, u.) = O(LF - ¢[3). ThusL(x,  u) >->- - ]O( ]x  - ~]3)] for anyu, from which it 

follows that q)(x) ~ y(x) - O([y -~ 13). On the other hand 

L ( x . . .  ) = T o (y .  u. )d, = o(1  - ¢13 ) 
0 

i.e. J(x, u.) - ¥(x) = O(Ix - ¢13)- since , (x)  -< J(x, u), we have q~(x) ~ W(x) + I O(Ix - ¢]3) l- 

2. T H E  Q U A S I P O T E N T I A L  IN A N E I G H B O U R H O O D  OF AN O R B I T  

Suppose x = ¢ ( 0  is a T-periodic solution of the deterministic system (0.1), which is no t  a stationary 
point (f(¢(t)) ~ 0), satisfying some initial condition ¢(0) = ~.~ and F is the phase trajectory of this solution 
(orbit). It is assumed that a neighbourhood U of the orbit F exists such that f(x) and o(x) are sufficiently 
smooth functions in U, the matrix a(x)ro(x) is positive definite for every point x e U, including x ~ F 
(the noise of system (0.2) is non-degenerate on the orbit), and that for any pointx e U there is a unique 
point ~x)  ¢ F which is the point on the trajectory F that is nearest tox. Here the vector A(x) = x - ?(x) 
is the displacement of the point x from the orbit orthogonal to the tangent vector f(~(x)). We assume 
that the solution x = ¢(t) of system (0.1) is exponentially orbitally stable. 

The quasipotential of system (0.2) in the neighbourhood U of the orbit I" is the function [4] 

(p(x) =inuf l i u  T (x)Q(y(s))u(s)ds, Q(y)= [o(y)o  T (y)]-' (2.1) 

where u is an n-dimensional control taking the system 

y" = -J (y)  + u (2.2) 

from the initial posit iony(O) = x onto  the orbit F 

iim A(y(s)) = 0 
$.--400 

Assuming that it is sufficiently smooth, the function ~p(x) I-- 0 satisfies the Hamilton-Jacobi equation 
in the neighbourhood U together with conditions on F 

old/  1 (o~o 
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39[ = 0 (2.3) 
mlr =0, -~-Xr 

We construct the first approximation of the quasipotential in the neighbourhood U of the orbit F. 
In a neighbourhcmd of the point 9 ~ F we can write 

~p(x) = ~("t) + (x - ~', ~ (~,)) + 

+ l ( x  ~2~ 
- v ,  ~.b--j-~- ( v )Cx  - v ) )  + o f l x  - ~l ~ ) (2.4) 

For each lixedx in (2.4) it is natural to take "/= ~(x). We put O(x) = 1/2(a29la~)(~x)~. It follows from 
(2.4) that ¢(x) = )l(X) + O( I A(x) I'), where it is natural to call the function qh(x) = a ~ (x)O(x)A(x) the 
orbital quadratic form. 

We introduce (he function 11(t) = ~ ( T -  t) which is the solution of Eq. (2.2) when u ~ 0. We denote 
by tOO the inverse function to ri(t) in the interval [0, T). Then O(x) = fly(x)) is the time at which the 
solution rl(t) is at the point ~(x) of the trajectory F, i.e. 11(t(~(x))) = ~x) .  Here we have the representation 

1 ~2qp 
¢,(x)  = v( t (~(x) ) ) ,  v ( t )  = ~ a-~-(n(t)) 

The function c]>(x) is thus uniquely defined in the neighbourhood U by the solution al(t) and the T- 
periodic matrix V(t). This simple representation of the matrix O(x) is due to the fact that it takes the 
same value at all points of the neighbourhood U lying in the (n - 1)-dimensional plane orthogonal to 
the orbit F at the point ~(x). For ~Pl(X) we have the representation 

~01 (x) = ( x -  ~(O(x))) r V ( O ( x ) ) ( x -  rl(O(x))) 

Doubly differentiating the Hamilton-Jacobi equation (2.3) with respect tox and substitutingx = rl(t), 
we obtain for V(t) (see [7]) the matrix Bernoulli equation 

V" - F r v  - V F -  2VSV = 0 (2.5) 

Here 

(:: I F(t)  = (~(t))  , 
k. J ]i , j=l 

S(t)  = o(r l ( t ) )o  r Ol(t)) 

are T-periodic matrices. 
Differentiating: the identity (Oq~/ax)(rl(t)) - 0 with respect to t, we obtain 

V(t)[(rl(t)) - 0 (2.6) 

i.e. the matrix 1I(0 is degenerate for all t. 
We denote by P~the matrix corresponding to the operator of projection onto the subspace orthogonal 

to the vector f ~ l~, Pf  = E - (ffr/fl')~. We introduce the T-periodic matrix P(t)  = Pf(n(O)" At any time t 
the matrix P(t)  specifies the operator of projection onto the subspace orthogonal to the orbit F at the 
point rl(t). 

Definition [7]. A T-periodic symmetric matrixA(t) is called P(t)-positive-definite at time t if for any 
T vector z such that P(t)z  ~ 0 the inequality z A(t)z > 0 holds. A matrixA(t)which is P(t)-positive-definite 

. . . . .  P 
for all 0 ~ t < T :Ls called P-posltrce-defimte and we can write A > 0. 

We will denote by Z the space of continuous T-periodic symmetric (n x n)-matrices B ( t )  such that 
for any t ~ [0, T) the equality B(t)f(rl(t)) = 0 holds. For such matrices we have the identity 

P( t )B( t )  - B( t )P( t )  - B( t )  
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We consider in Y. the cone of matrices K = {A a Y~IA g 0}. 
The construction of the first approximation of the quasipotential in the neighbourhood of the orbit 

F reduces, by Theorems 2-4 (see below), to the solution of Lyapunov's equation 

W" + FW + WF t + 2 PSP = 0 (2.7) 

Theorem 2. When the solution [(t) of system (0.1) is EOS, Eq. (2.7) has a unique solution W(t) inK. 

Proof. We relate the matrices 

3 f  
Fl(t) = ~x(~(t)), Pl(t) = P/(~(,)) 

to the solution ~(O of system (0.1). 
We denote by Yl the space of continuous symmetric T-periodic (n x n)-matrices V(t) such that for 

any t ¢ [0, T) We have V(t)f(~(t)) = 0. In Y_q we consider the cone 

t,:, = {v ¢ z, Iva>o} 
and the scalar product 

T 

(V, W) = ~ tr(V(t)W(t))dt 
o 

We consider the operator A defined on the continuously-differentiable matrices V ¢ Y-a by 

A(V)= V + F~rV + VF~ 

Due to the EOS of the solution ~(t) (see [7]), for any element C ¢ K1 the equation 

A ( v ' )  = - c 

has a unique solution V ¢ KI. Because KI is the generating cone [10] in El, the operator is invertible 
throughout the space ZI. The operator A*, conjugate to A, is given on D ¢ ZI by 

A*(D) = -D" + F1D+ DF[ 

It can be shown that for any element G E/(1, the element D = -(A-1)*(G) is the unique solution in 
K1 of the equation 

-O'  + 6 0 +  OFf  = -G (2.8) 

Making the change of variable t = T -  x in (2.8) we obtain relation (2.7) for the matrices 

F ( x ) = F I ( T - x ) ,  W ( ' O = D ( T - x ) ¢ K  

2P(x)S(x)P(x)  = G ( T -  x) ~ K 

Theorem 2 is proved. 

Theorem 3. Let  W(t) e K be a solution of Eq. (2.7). Then V(t) = W+(t) ¢ K and the equation 

V" - F r v  - V F -  2VSV = 0 (2.9) 

is satisfied. 

Proof. The inclusion of Vin the cone K is a consequence of the fact that W E K. Since V = VWV = 
VP = PV, we have 
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VW'V = - V  + V ( E -  P ) + ( E -  P)V" (2.10) 

Multiplying the left-hand side of (2.7) on the left and right by V, we obtain, taking (2.10) into account, 
the relation 

, V  + V ( E -  P)+ ( E -  P)V + VFP + pFrV + 2VSV = 0 (2.11) 

Differentiating the identity V(t)fOl(t)) -- 0 with respect to t, we obtain 

Vf(r l ( t ) ) -  VFfOl(t)) -- 0 

whence it follows that V'(E- P) = VF(E - P), and consequently, relation (2.11) acquires the form 

- V  + VF+ Frv+  2VSV = 0 

Relation (2.9)therefore holds for the matrix V = W +. 
Let V(x) = A~OV(O(x))A(x). 

Lemma 2. For s?.tstem (2.2) with control u* = --o0,)or(y)(0~lt/~)(y) the solutiony = Tl(t) is exponentially 
orbitaUy stable. 

Proof. For f,(y) = -f(y) + u,(y) we have the relation 

F, (t) = ~f* ('q(t)) = -F(t) - 2S(t)V(t) 
OX 

From (2.9) it follows that 

V +F.rV+VF. +2VSVffiO 

where the matrix VSV~ K. The EOS of solutiony = rift) follows from the criteria of [7]. 

Theorem 4. Let ¥(x) = A T(x)V( O(x) )A(x), where V(t) = W + (t), and W(t) ¢ g is a solution of Eq. (2.7). 
Then the representation 

q~(x) = ~(x)+O(IACx)l 3 ) 

holds for the quasipotential (2.1) in the neighbourhood of the orbit F. 

Proof. Consider the function L(x, u) = J(x, u) - ¥(x) where 

J(x, u) = ½ i .  r 

is calculated with y and z from (2.2). Using the technique of [9], we can write 

1 t 2 ¥  
L(x,u)=iG(y,u)ds,  G(y ,u )=-~uQ(y )u+( -~x (y ) , - f ( y )+u)  

Let u. = _Q-1 ly)(~/~x)0'). Then for anyy and u the following relation holds 

G(y,u) >- G(y,u. ) = l  l-~x (Y), Q-' (y)~x (y))+(-~x (y),f .(y) I 

Using the expmasion lemma from [7], we obtain 



54 G .N .  Mil'shtein and L. B. Ryashko 

For the remaining terms of  GO', u.) we have the equality 

OO~x'(y ) = 2V(t)(y  - rl(t) ) + O(ly- ) 11(t)l 3 

Q-I ( y ) = G(y )at ( y ) = S( t ) + O ( l y -  rl(t)l) 

G(y, u, ) = O(Ia(Y)l 3), 

The relations 

a ( y , u , ) )  -Io(la(y)l 3)1 

follow from these expansions and from (2.12). 
Because u. stabilizes system (2.2) (see Lemma 2), L(x,  u.)  >~ - IO(Ia(x )13) l  . It follows from this 

inequality that 

On the other hand 

{p(x) = re=in J(x,u)>~ ~(x)- Io(IA(x)13)l 

L(x, u,  ) = ~G(y, u,  )dr -- O(IA(x)l 3) 
o 

i.e. J(x, u.)  = ¥(x)  + O( la (x )  13). Since ¢p(x) ~ J(x, u), we have 

v(x)+lo(IA(.):) I 
Finally, we obtain the inequality 

-I °(' a(x)13 )1 )l 
Theorem 4 is proved. 

Remark. Note that the assumption of the smoothness of the quasipotential ~x) was only used in preliminary 
arguments of a heuristic nature when deriving Eqs (2.5) and (2.6). This assumption was not used to obtain the 
precise results. 

3. T H E  P L A N E  O R B I T  CASE 

We consider the Lyaptmov equation 

W +  FW + WF T + 2 P S P = O  (3.1) 

for n = 2. In this case the projection matrix is of rank 1 and is given by P(t) = a)(t)ra)(t) where a)(t), the 
normalized eigenvector of the matrix P(t), is orthogonal to f(rl(t)) for all t. It can be shown that 

W(t) = It(t)aJ(t)a)r (t), P(t)S(t)P(t)  = [$(t)a)(t)a)r (t) (3.2) 

where It(t) > 0, [$(t) > 0 are T-periodic functions which are the eigenvalues of the matrices S and PSI* 
for all t. Note that [$(t) = ~)r(t)S(t)a)(t). Substituting (3.2) into (3.1), we obtain 

It.~)~T + It~).~)r + It~)(DT). + It[DDTF T + F~IjT ] + 2[$1)~)T = O 

After multiplying on the left by ~T and on the right by ~ an taking ~T~ = 1 into account, we obtain 

It  + It['oT~" + (U T)''O] + It'Or[F T + F]'o + 2[$ = 0 

Since ~r~. + (~T).~ = [~T~], __ 0, we have 

It  +~T[FT + F]~). It + 2[$ = 0 
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We have thus obtained a linear equation for St. The required T-periodic solution (ll(T) ffi p(0)) is 
found analytically, 

Using the constraint V = W +, we obtain the matrix V(t) = ~ l ( t )~ ( t )~ ' ( t ) .  Hence the function giving 
the first app ro~aa t ion  of  the quasipotential has the form ¥(x) = ~t -~ (O(x)) [A(x) [z. The function ~(t) 
is a simple numerical characteristic of  the stability of  the system in a neighbourhood of the orbit F. For  
example, the points where the trajectory is most likely to leave the neighbourhood [ A(x) [ ~ p for small 
p lie near that section of the orbit F where p(t) takes its largest values. 

1. Consider the system 

E X A M P L E S  

• ~i -- xl + ~  - x2(x~ + x ~ ) + ~ i  

with small additive noise. Introducing polar coordinates Xl ffi r cos cp, x2 ffi r sin ? we obtain 

2 

r'=tXr-r 3 +~- +gw', w'f(xlw i+x2w'2)/r 
2r 

(p" = l + ~ v ' ,  v '=(x lw '2-x2wi) l r  
F 

It is well known that in the deterministic case (c ffi 0), when the parameter a crosses zero from left to right, the 
asymptotic stability of the stationary point r0 ffi 0 turns into instability for a > 0. Here an exponentially stable orbit 
appeats---a circle of radius r0 ffi ~(a) (soft Andronov-Hopf bifurcation). It is interesting to trace how this qualitative 
transition (stationary point to cycle) is accompanied by quantitative changes in the asymptotic behaviour [4] lc ffi 
lim~_~E 2 in E{~ e} of the mean time of departure x e of the trajectory from the neighbourhood U under the action 
of small random perturbations. 

In the stochastic c~se (~ ;e 0) we find: 
(a) for a < 0 the first approximation of the quasipotential in the neighbourhood U ffi {(xl, xg)[r ~< e } - - a  

disc with dian~eter 2p and centre at the stationary point I"0 -- 0, is the function ¥ -- - a ( r -  r0) ~ -- - o f ,  and 
~c = --o~ z + O(p3); 

(b) for a > 0 the first approximation of the quasipotential in the neighbourhood U ffi (xl, xz) ] [r - r0] ~< p, r0 -- 
2 2 3 ~/(a))--an annulus of width 2p--is the function ¥ = 2~(r-ro) ; and here ic = 200 + O(p ). 

2. Consider the van der Pol equation with small non-degenerate noises 

xi = x2 + ~ol (xl,x2)wi 

x2 = -x I ÷ o~r 2 (I - x 2 ) ÷ ~o2 (Xl ,X2 )W2 

We know that the asymptotically stable orbit Fa of the solutionx -- ~(t, a) of the deterministic van der Pol equation 
for small a > 0 differs little from a circle of radius 2. Here the period Ta of the solution ~(t, a) is close to 2~. The 
first approximation of the quasipotential in a small neighbourhood of the orbit F~ is the function 

¥(x ,a )  =lA(x,a)l 2 II.t(O(x,a),a) 

Here A(x, a) is the deviation of the point x from the orbit Fa, the function p(t, a) is a T~perindic solution of 
the equation 

Ix" +a(t,a)B +b(t,a) ffi 0 

and the Ta-periodic coefficients have the expansions 

a(t,a) = a(-2  + 3cos4t-  cos 20 + O(a 2 ) 

b(t,~) = b O (t) + O(ot) 

bo(t ) = cos 2 ~2(2cost, 2sint)+sin 2 ~22(2cost,2sint) 

The corresponding expansion of the function o4t(t, a) has the form 

2st 
c~(t,a)=--~z+O(a), c= ~bo(t)~ 

0 
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As a result we obtain 

~(x,C~) = 4gc - l a lA(x ,a ) l  2 (I + O(¢z)) 

The asymptotic behaviour t: = lim~_,0 e 2 In E{x e} of the t ime of  departure of x ~ from the neighbourhood Up = 
{xllA(x, ¢¢)[ ~< p} of the orbit T a for small ¢x and p is as follows: K = 4nc-lcxp 2. 

Remark. We made mistakes in Theorems 2 and 3 in [8]. These can be corrected if, for example, in the inequality 
Px . 

C(x) - ¢x(x)//> 0 m Theorem 2 1 is replaced by V(x), and in Theorem 3 the condit ion 

l ~t('c)trV('c)dx < 1 
o 

is replaced by the condit ion 

max[l~(~) tr V(x)] < ! 

0 < ~ < T  
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